255 research outputs found

    Failure mode identification and end of life scenarios of offshore wind turbines: a review

    Get PDF
    In 2007, the EU established challenging goals for all Member States with the aim of obtaining 20% of their energy consumption from renewables, and offshore wind is expected to be among the renewable energy sources contributing highly towards achieving this target. Currently wind turbines are designed for a 25-year service life with the possibility of operational extension. Extending their efficient operation and increasing the overall electricity production will significantly increase the return on investment (ROI) and decrease the levelized cost of electricity (LCOE), considering that Capital Expenditure (CAPEX) will be distributed over a larger production output. The aim of this paper is to perform a detailed failure mode identification throughout the service life of offshore wind turbines and review the three most relevant end of life (EOL) scenarios: life extension, repowering and decommissioning. Life extension is considered the most desirable EOL scenario due to its profitability. It is believed that combining good inspection, operations and maintenance (O&M) strategies with the most up to date structural health monitoring and condition monitoring systems for detecting previously identified failure modes, will make life extension feasible. Nevertheless, for the cases where it is not feasible, other options such as repowering or decommissioning must be explored

    Structural health monitoring of offshore wind turbines: A review through the Statistical Pattern Recognition Paradigm

    Get PDF
    Offshore Wind has become the most profitable renewable energy source due to the remarkable development it has experienced in Europe over the last decade. In this paper, a review of Structural Health Monitoring Systems (SHMS) for offshore wind turbines (OWT) has been carried out considering the topic as a Statistical Pattern Recognition problem. Therefore, each one of the stages of this paradigm has been reviewed focusing on OWT application. These stages are: Operational Evaluation; Data Acquisition, Normalization and Cleansing; Feature Extraction and Information Condensation; and Statistical Model Development. It is expected that optimizing each stage, SHMS can contribute to the development of efficient Condition-Based Maintenance Strategies. Optimizing this strategy will help reduce labor costs of OWTs׳ inspection, avoid unnecessary maintenance, identify design weaknesses before failure, improve the availability of power production while preventing wind turbines׳ overloading, therefore, maximizing the investments׳ return. In the forthcoming years, a growing interest in SHM technologies for OWT is expected, enhancing the potential of offshore wind farm deployments further offshore. Increasing efficiency in operational management will contribute towards achieving UK׳s 2020 and 2050 targets, through ultimately reducing the Levelised Cost of Energy (LCOE)

    The end of the line for today's wind turbines

    Get PDF
    We need to start thinking today about the future of our wind turbines, according to Dr Athanasios Kolios and María Martínez-Luengo from Cranfield University. EDF's recent announcement that they will extend the life of 4 of their 8 UK-based nuclear power plants has focussed analyst's minds on the pros and cons of extending service life. There are numerous cost and engineering issues at play here. These obviously include balancing the initial investment cost against profits already made and the potential decreasing efficiency alongside the increasing maintenance costs in an ageing facility. The issues cut across the whole energy sector, but they aren’t something many of our renewable technologies have yet had to face

    Advanced structural health monitoring strategies for condition-based maintenance planning of offshore wind turbine support structures

    Get PDF
    Condition-based maintenance strategies need to be adopted as distance-to-shore and water depth increase in the offshore wind industry. The aim of the research presented herein is to develop advance structural health monitoring strategies that enhance the condition-based maintenance of offshore wind turbine support structures. The focus is on the selection of technologies, the implementation process, the analysis of the asset’s structural response under complex loading, the economic justification for structural health monitoring implementation and the effective structural health monitoring data analysis. Research activities consist of the provision of a comprehensive study for structural health monitoring technologies’ utilisation in the offshore wind industry. This is followed by parametric structural modelling, simulation and validation of an operational offshore wind turbine tower, support structure and soil-structure interaction, using commercial software. The evaluation of the asset’s response under complex loading subject to design changes and failure mechanisms is also undertaken. A combination of existing and newly developed methodologies is deployed for the effective data management of structural health monitoring systems and validated with industrial data for the case of strain monitoring. These include unsupervised learning algorithms (neural networks), deterministic and probabilistic methods for noise cleansing and missing data imputation. Guidelines for the structural health monitoring implementation from design stage of a wind farm are proposed and applied to a baseline scenario. This is utilised to assess the economic impact that structural health monitoring has in the lifecycle of the assets. The achieved results show that the implementation of structural health monitoring in offshore wind turbine following the Statistical Pattern Recognition paradigm and the proposed guidelines has the potential to reduce the Operational Expenditure. This reduction is much greater than the cost associated with the implementation of these systems. Monitoring from the commissioning of the assets is crucial for the system’s calibration and establishing thresholds. The developed noise cleansing and missing data imputation methodologies can successfully be employed together to produce more complete low-disturbed datasets

    Parametric FEA modelling of offshore wind turbine support structures: towards scaling-up and CAPEX reduction

    Get PDF
    Parametric Finite Element Analysis (FEA) modelling is a powerful design tool often used for offshore wind. It is so effective because key design parameters (KDPs) can be modified directly within the python code, to assess their effect on the structure’s integrity, saving time and resources. A parametric FEA model of offshore wind turbine (OWT) support structures (consisting of monopile (MP), soil-structure interaction, transition piece (TP), grouted connection (GC) and tower) has been developed and validated. Furthermore, the different KDPs that impact on the design and scaling-up of OWT support structures were identified. The aim of the analyses is determining how different geometry variations will affect the structural integrity of the unit and if these could contribute to the turbine’s scale-up by either modifying the structure’s modal properties, improving its structural integrity, or reducing capital expenditure (CAPEX). To do so, three design cases, assessing different KDPs, have been developed and presented. Case A investigated how the TP’s and GC’s length influences the structural integrity. Case B evaluated the effect of size and number of stoppers in the TP, keeping a constant volume of steel; and Case C assessed the structure’s response to scour development. It is expected that this paper will provide useful information in the conceptual design and scale-up of OWT support structures, helping in the understanding of how KDPs can affect not only the structure’s health, but also its CAPEX

    Parametric FEA modelling of offshore wind turbine support structures: towards scaling-up and CAPEX reduction

    Get PDF
    Parametric Finite Element Analysis (FEA) modelling is a powerful design tool often used for offshore wind. It is so effective because key design parameters (KDPs) can be modified directly within the python code, to assess their effect on the structure’s integrity, saving time and resources. A parametric FEA model of offshore wind turbine (OWT) support structures (consisting of monopile (MP), soil-structure interaction, transition piece (TP), grouted connection (GC) and tower) has been developed and validated. Furthermore, the different KDPs that impact on the design and scaling-up of OWT support structures were identified. The aim of the analyses is determining how different geometry variations will affect the structural integrity of the unit and if these could contribute to the turbine’s scale-up by either modifying the structure’s modal properties, improving its structural integrity, or reducing capital expenditure (CAPEX). To do so, three design cases, assessing different KDPs, have been developed and presented. Case A investigated how the TP’s and GC’s length influences the structural integrity. Case B evaluated the effect of size and number of stoppers in the TP, keeping a constant volume of steel; and Case C assessed the structure’s response to scour development. It is expected that this paper will provide useful information in the conceptual design and scale-up of OWT support structures, helping in the understanding of how KDPs can affect not only the structure’s health, but also its CAPEX

    Data Management for Structural Integrity Assessment of Offshore Wind Turbine Support Structures: Data Cleansing and Missing Data Imputation

    Get PDF
    Structural Health Monitoring (SHM) and Condition Monitoring (CM) Systems are currently utilised to collect data from offshore wind turbines (OWTs), to enhance the accurate estimation of their operational performance. However, industry accepted practices for effectively managing the information that these systems provide have not been widely established yet. This paper presents a four-step methodological framework for the effective data management of SHM systems of OWTs and illustrates its applicability in real-time continuous data collected from three operational units, with the aim of utilising more complete and accurate datasets for fatigue life assessment of support structures. Firstly, a time-efficient synchronisation method that enables the continuous monitoring of these systems is presented, followed by a novel approach to noise cleansing and the posterior missing data imputation (MDI). By the implementation of these techniques those data-points containing excessive noise are removed from the dataset (Step 2), advanced numerical tools are employed to regenerate missing data (Step 3) and fatigue is estimated for the results of these two methodologies (Step 4). Results show that after cleansing, missing data can be imputed with an average absolute error of 2.1%, while this error is kept within the [+ 15.2%−11.0%] range in 95% of cases. Furthermore, only 0.15% of the imputed data fell outside the noise thresholds. Fatigue is found to be underestimated both, when data cleansing does not take place and when it takes place but MDI does not. This makes this novel methodology an enhancement to conventional structural integrity assessment techniques that do not employ continuous datasets in their analyses

    Guidelines and Cost-Benefit Analysis of the Structural Health Monitoring Implementation in Offshore Wind Turbine Support Structures

    Get PDF
    This paper investigates how the implementation of Structural Health Monitoring Systems (SHMS) in the support structure (SS) of offshore wind turbines (OWT) affects capital expenditure (CAPEX) and operational expenditure (OPEX) of offshore wind farms (WF). In order to determine the added value of Structural Health Monitoring (SHM), the balance between the reduction in OPEX and the increase in CAPEX is evaluated. In this paper, guidelines for SHM implementation in offshore WF are developed and applied to a baseline scenario. The application of these guidelines consist of a review of present regulations in the United Kingdom and Germany, the development of SHM strategy, where the first stage of the Statistical Pattern Recognition (SPR) paradigm is explored, failure modes that can be monitored are identified, and SHM technologies and sensor distributions within the turbines are described for a baseline scenario. Furthermore, an inspection strategy where the different structural inspections to be carried out above and below water is also developed, together with an inspection plan for the lifetime of the structures, for the aforementioned baseline scenario. Once the guidelines have been followed and the SHM and inspection strategies developed, a cost-benefit analysis is performed on the baseline case (10% instrumented assets) and three other scenarios with 20%, 30% and 50% of instrumented assets. Finally, a sensitivity analysis is conducted to evaluate the effects of SHM hardware cost and the time spent in completing the inspections on OPEX and CAPEX of the WF. The results show that SHM hardware cost increases CAPEX significantly, however this increase is much lower than the reduction in OPEX caused by SHM. The results also show that an increase in the percentage of instrumented assets will reduce OPEX and this reduction is considerably higher than the cost of SHM implementation

    Machadinha votiva de Cariño, La Coruña.

    Get PDF
    74 (1-2) Jan.-Jun. 1964, p. 149-157

    Risk factors associated with adverse fetal outcomes in pregnancies affected by Coronavirus disease 2019 (COVID-19): a secondary analysis of the WAPM study on COVID-19.

    Get PDF
    Objectives To evaluate the strength of association between maternal and pregnancy characteristics and the risk of adverse perinatal outcomes in pregnancies with laboratory confirmed COVID-19. Methods Secondary analysis of a multinational, cohort study on all consecutive pregnant women with laboratory-confirmed COVID-19 from February 1, 2020 to April 30, 2020 from 73 centers from 22 different countries. A confirmed case of COVID-19 was defined as a positive result on real-time reverse-transcriptase-polymerase-chain-reaction (RT-PCR) assay of nasal and pharyngeal swab specimens. The primary outcome was a composite adverse fetal outcome, defined as the presence of either abortion (pregnancy loss before 22 weeks of gestations), stillbirth (intrauterine fetal death after 22 weeks of gestation), neonatal death (death of a live-born infant within the first 28 days of life), and perinatal death (either stillbirth or neonatal death). Logistic regression analysis was performed to evaluate parameters independently associated with the primary outcome. Logistic regression was reported as odds ratio (OR) with 95% confidence interval (CI). Results Mean gestational age at diagnosis was 30.6+/-9.5 weeks, with 8.0% of women being diagnosed in the first, 22.2% in the second and 69.8% in the third trimester of pregnancy. There were six miscarriage (2.3%), six intrauterine device (IUD) (2.3) and 5 (2.0%) neonatal deaths, with an overall rate of perinatal death of 4.2% (11/265), thus resulting into 17 cases experiencing and 226 not experiencing composite adverse fetal outcome. Neither stillbirths nor neonatal deaths had congenital anomalies found at antenatal or postnatal evaluation. Furthermore, none of the cases experiencing IUD had signs of impending demise at arterial or venous Doppler. Neonatal deaths were all considered as prematurity-related adverse events. Of the 250 live-born neonates, one (0.4%) was found positive at RT-PCR pharyngeal swabs performed after delivery. The mother was tested positive during the third trimester of pregnancy. The newborn was asymptomatic and had negative RT-PCR test after 14 days of life. At logistic regression analysis, gestational age at diagnosis (OR: 0.85, 95% CI 0.8-0.9 per week increase; pPeer reviewe
    corecore